Studying Salt-Induced Shifts in Gene Expression Patterns of Glucosinolate Transporters and Glucosinolate Accumulation in Two Contrasting Brassica Species

Author:

Fatima Samia1,Khan Muhammad Omar1,Iqbal Nadia1,Iqbal Muhammad Mudassar1,Qamar Huma23,Imtiaz Muhammad1ORCID,Hundleby Penny4,Wei Zhengyi5ORCID,Ahmad Niaz1ORCID

Affiliation:

1. National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute for Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan

2. Oilseeds Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan

3. School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia

4. Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK

5. Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China

Abstract

Brassica crops are well known for the accumulation of glucosinolates—secondary metabolites crucial for plants’ adaptation to various stresses. Glucosinolates also functioning as defence compounds pose challenges to food quality due to their goitrogenic properties. Their disruption leaves plants susceptible to insect pests and diseases. Hence, a targeted reduction in seed glucosinolate content is of paramount importance to increase food acceptance. GLUCOSINOLATE TRANSPORTERS (GTRs) present a promising avenue for selectively reducing glucosinolate concentrations in seeds while preserving biosynthesis elsewhere. In this study, 54 putative GTR protein sequences found in Brassica were retrieved, employing Arabidopsis GTR1 and GTR2 templates. Comprehensive bioinformatics analyses, encompassing gene structure organization, domain analysis, motif assessments, promoter analysis, and cis-regulatory elements, affirmed the existence of transporter domains and stress-related regulatory elements. Phylogenetic analysis revealed patterns of conservation and divergence across species. Glucosinolates have been shown to increase under stress conditions, indicating a potential role in stress response. To elucidate the role of GTRs in glucosinolate transportation under NaCl stress in two distinct Brassica species, B. juncea and B. napus, plants were subjected to 0, 100, or 200 mM NaCl. Based on the literature, key GTR genes were chosen and their expression across various plant parts was assessed. Both species displayed divergent trends in their biochemical profiles as well as glucosinolate contents under elevated salt stress conditions. Statistical modelling identified significant contributors to glucosinolate variations, guiding the development of targeted breeding strategies for low-glucosinolate varieties. Notably, GTR2A2 exhibited pronounced expressions in stems, contributing approximately 52% to glucosinolate content variance, while GTR2B1/C2 displayed significant expression in flowers. Additionally, GTR2A1 and GTR1A2/B1 demonstrated noteworthy expression in roots. This study enhances our understanding of glucosinolate regulation under stress conditions, offering avenues to improve Brassica crop quality and resilience.

Funder

ICGEB

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3