Abstract
The aim of the present research was the evaluation of the behavior of human periodontal ligament stem cells (hPDLSCs), cultured in presence of Endobon® Xenograft Granules (G), a fully deproteinated hydroxyapatite ceramic scaffold derived from cancellous bovine bone. hPDLSCs were seeded with and without G for 24 h to 1 week. The cell growth, morphological features, adhesiveness, differentiation ability, modulation of miR-210 and Vascular Endothelial Growth Factor (VEGF) secretion were analyzed by means of MTT assay, Scanning Electron Microscopy (SEM), Confocal Laser Scanning Microscopy (CLSM), Alizarin Red S assay, RT-PCR and ELISA test, respectively. hPDLSCs grown on the biomaterial showed the ability to form focal adhesion on the substrate, as demonstrated by vinculin expression. These data were supported by SEM analysis showing that an adhesiveness process associated to cell growth occurs between cells and biomaterials. The osteogenic differentiation, evaluated by morphological, biochemical, and RT-PCR analysis, was pronounced in the hPDLSCs grown in the three-dimensional inorganic bovine bone substitute in the presence of osteoinductive conditions. In addition, an upregulation of miR-210 and VEGF was evident in cells cultured in presence of the biomaterial. Our results inspire us to consider granules not only an adequate biocompatible three-dimensional biomaterial, but also an effective inductor of miR-210 and VEGF; in fact, the involvement of miR-210 in VEGF secretion could offer a novel regulatory system in the early steps of the bone-regeneration process.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献