A Deep Learning Approach for Biped Robot Locomotion Interface Using a Single Inertial Sensor

Author:

Alemayoh Tsige Tadesse1ORCID,Lee Jae Hoon1ORCID,Okamoto Shingo1

Affiliation:

1. Department of Mechanical Engineering, Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Ehime, Japan

Abstract

In this study, we introduce a novel framework that combines human motion parameterization from a single inertial sensor, motion synthesis from these parameters, and biped robot motion control using the synthesized motion. This framework applies advanced deep learning methods to data obtained from an IMU attached to a human subject’s pelvis. This minimalistic sensor setup simplifies the data collection process, overcoming price and complexity challenges related to multi-sensor systems. We employed a Bi-LSTM encoder to estimate key human motion parameters: walking velocity and gait phase from the IMU sensor. This step is followed by a feedforward motion generator-decoder network that accurately produces lower limb joint angles and displacement corresponding to these parameters. Additionally, our method also introduces a Fourier series-based approach to generate these key motion parameters solely from user commands, specifically walking speed and gait period. Hence, the decoder can receive inputs either from the encoder or directly from the Fourier series parameter generator. The output of the decoder network is then utilized as a reference motion for the walking control of a biped robot, employing a constraint-consistent inverse dynamics control algorithm. This framework facilitates biped robot motion planning based on data from either a single inertial sensor or two user commands. The proposed method was validated through robot simulations in the MuJoco physics engine environment. The motion controller achieved an error of ≤5° in tracking the joint angles demonstrating the effectiveness of the proposed framework. This was accomplished using minimal sensor data or few user commands, marking a promising foundation for robotic control and human–robot interaction.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3