Natural Gas Conversion and Organic Waste Gasification by Detonation-Born Ultra-Superheated Steam: Effect of Reactor Volume

Author:

Frolov Sergey M.ORCID,Smetanyuk Viktor A.ORCID,Sadykov Ilias A.,Silantiev Anton S.,Shamshin Igor O.ORCID,Aksenov Viktor S.,Avdeev Konstantin A.ORCID,Frolov Fedor S.

Abstract

The pulsed detonation (PD) gun technology was applied for the autothermal high-temperature conversion of natural gas and atmospheric-pressure oxygen-free allothermal gasification of liquid/solid organic wastes by detonation-born ultra-superheated steam (USS) using two flow reactors of essentially different volume: 100 and 40 dm3. Liquid and solid wastes were waste machine oil and wood sawdust, with moisture ranging from 10 to 30%wt. It was expected that decrease in the reactor volume from 100 to 40 dm3, other conditions being equal, on the one hand, should not affect natural gas conversion but, on the other hand, could lead to an increase in the gasification temperature in the flow reactor and, correspondingly, to an increase in the product syngas (H2 + CO) quality. The PD gun was fed by natural gas–oxygen mixture and operated at a frequency of 1 Hz. As was expected, complete conversion of natural gas to product syngas in the PD gun was obtained with H2/CO and CO2/CO ratios equal to 1.25 and 0.25, irrespective of the reactor volume. Liquid and solid wastes were gasified to H2, CO, and CH4 in the flow reactors. The steady-state H2/CO and CO2/CO ratios in the syngas produced from waste machine oil were 0.8 and 0.5 for the 100-dm3 reactor and 0.9 and 0.2 for the 40-dm3 reactor, respectively, thus indicating the expected improvement in syngas quality. Moreover, the maximum mass flow rate of feedstock in the 40-dm3 reactor was increased by a factor of over 4 as compared to the 100-dm3 reactor. The steady-state H2/CO and CO2/CO ratios in the syngas produced from the fixed weight (2 kg) batch of wood sawdust were 0.5 and 0.8 for both reactors, and the gasification time in both reactors was about 5–7 min. The measured H2 vs. CO2 and CO vs. CO2 dependences for the syngas produced by the autothermal high-temperature conversion of natural gas and atmospheric-pressure allothermal gasification of liquid/solid organic wastes by USS at f = 1 Hz were shown to be almost independent of the feedstock and reactor volume due to high values of local instantaneous gasification temperature.

Publisher

MDPI AG

Subject

General Medicine

Reference40 articles.

1. Direct Natural Gas Conversion to Value-Added Chemicals;Hu,2022

2. Biomass Gasification and Pyrolysis;Base,2010

3. Gasification;Bain,2011

4. Organic Waste Gasification: A Selective Review

5. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3