Laser Melting Deposition Additive Manufacturing of Ti6Al4V Biomedical Alloy: Mesoscopic In-Situ Flow Field Mapping via Computational Fluid Dynamics and Analytical Modelling with Empirical Testing

Author:

Mahmood Muhammad ArifORCID,Ur Rehman AsifORCID,Pitir Fatih,Salamci Metin UymazORCID,Mihailescu Ion N.ORCID

Abstract

Laser melting deposition (LMD) has recently gained attention from the industrial sectors due to producing near-net-shape parts and repairing worn-out components. However, LMD remained unexplored concerning the melt pool dynamics and fluid flow analysis. In this study, computational fluid dynamics (CFD) and analytical models have been developed. The concepts of the volume of fluid and discrete element modeling were used for computational fluid dynamics (CFD) simulations. Furthermore, a simplified mathematical model was devised for single-layer deposition with a laser beam attenuation ratio inherent to the LMD process. Both models were validated with the experimental results of Ti6Al4V alloy single track depositions on Ti6Al4V substrate. A close correlation has been found between experiments and modelling with a few deviations. In addition, a mechanism for tracking the melt flow and involved forces was devised. It was simulated that the LMD involves conduction-mode melt flow only due to the coaxial addition of powder particles. In front of the laser beam, the melt pool showed a clockwise vortex, while at the back of the laser spot location, it adopted an anti-clockwise vortex. During printing, a few partially melted particles tried to enter into the molten pool, causing splashing within the melt material. The melting regime, mushy area (solid + liquid mixture) and solidified region were determined after layer deposition. This research gives an in-depth insight into the melt flow dynamics in the context of LMD printing.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3