Printed layers height calibration curve and porosity in laser melting deposition of Ti6Al4V combining experiments, mathematical modelling and deep neural network

Author:

Mahmood Muhammad Arif,Diana Chioibasu,Sajjad Uzair,Mihai Sabin,Tiseanu Ion,Popescu Andrei C.

Abstract

Purpose Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process. Design/methodology/approach In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output. Findings The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results. Originality/value This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3