Abstract
A photoelectric scanning measurement network is a kind of distributed measurement system based on the principle of angle intersection, in which transmitters and photoelectric receivers are the main parts. The scanning lasers in transmitters emit signals and they are obtained by receivers at the measured points. Then the coordinate of the receiver can be calculated by the optimization algorithm. Its outstanding static measurement performance and network scalability capacity give it great potential in large-scale metrology. However, when it comes to moving targets, the angle intersection failure will produce a dynamic error, which limits its further application. Nowadays the research on error modeling and compensation is also insufficient though it has been the crucial concern. In this paper, we analyzed error causes and constructed a dynamic error model. Dynamic error characteristics and the law of propagation were discussed. The measurement uncertainty at different movement speeds was quantized through simulation experiments. To verify the error model, experiments were designed and the dynamic error was evaluated in practice. It matched well with simulations. The model was tested to be reasonable, and provided theoretical support for error compensation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献