Abstract
The condensation of humid air is a crucial step in air conditioning and process engineering. However, the models that describe the condensation of vapour in the presence of a non-condensable gas require time-consuming numerical calculations that go beyond the Nusselt film theory. Only a small number of publications exist, where simple and computationally effective correlations for the condensation of water vapour in the presence of air are presented for specially designed condenser heat exchangers. Therefore, the objective of this paper is to extend the existing semi-empirical correlations for different geometries and process parameters. For the purpose of the study, an experimental setup with two different condenser heat exchangers based on vertical plates (height 74 mm) and horizontal tubes (3 tubes, diameter 40 mm and 7 tubes, diameter 15 mm) was built. Additionally, based on existing correlations, we developed two semi-empirical models that predict the condensation mass flux for the proposed geometries. Here, we report that the agreement between the experimental and theoretical values predicted by the new, semi-empirical correlations is excellent, with an average uncertainty of less than ±6%. Their usability was demonstrated by a possibly significant performance improvement of the condenser inside a condensation-type tumble dryer.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献