Analysis of Flow and Pressure Drop on Tube Side of Spiral Tube Heat Exchanger under Sloshing Conditions

Author:

Li Fengzhi1,Tian Zhongyun1ORCID,Jiang Yiqiang1,Zheng Wenke1,Chen Jie2,Li Shulei3

Affiliation:

1. Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, School of Architecture, Harbin Institute of Technology, Harbin 150000, China

2. China National Offshore Oil Corporation Gas and Power Group, Beijing 100028, China

3. School of Marine Science and Technology, Northwestern Polytechnical University, Box 24, Xi’an 710072, China

Abstract

The utilization of the spiral tube heat exchanger (SHE) has become increasingly prevalent in large-scale liquefaction processes. However, the flow pattern and frictional pressure drop of two-phase flow in the spiral tube have been scarcely studied, particularly under offshore sloshing conditions. An experimental system had been developed to explore the flow pattern and frictional pressure drop characteristics of mixed hydrocarbon fluid in a spiral tube. Moreover, these have been developed in order to examine the effects of sloshing style (roll, pitch, heave), sloshing period (5–15 s), sloshing amplitude (5–15° or 50–150 mm), mass flux (200–800 kg/(m2·s)), vapor quality (0–1), and saturation pressure (2–4 MPa) on the frictional pressure drop of methane/ethane mixture in the spiral tube. The results indicated that sloshing conditions reduce the frictional pressure drop, thereby enhancing fluid flow. A correlation was established to predict the sloshing factor of frictional pressure drop, and the MARD under verification conditions was 6.04%. Furthermore, three flow pattern boundaries were proposed based on We* as an indicator.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3