Affiliation:
1. College of Computer and Information Engineering, Central South University of Forestry and Technology University, Changsha 410004, China
Abstract
The deep learning method for natural-image object detection tasks has made tremendous progress in recent decades. However, due to multiscale targets, complex backgrounds, and high-scale small targets, methods from the field of natural images frequently fail to produce satisfactory results when applied to aerial images. To address these problems, we proposed the DET-YOLO enhancement based on YOLOv4. Initially, we employed a vision transformer to acquire highly effective global information extraction capabilities. In the transformer, we proposed deformable embedding instead of linear embedding and a full convolution feedforward network (FCFN) instead of a feedforward network in order to reduce the feature loss caused by cutting in the embedding process and improve the spatial feature extraction capability. Second, for improved multiscale feature fusion in the neck, we employed a depth direction separable deformable pyramid module (DSDP) rather than a feature pyramid network. Experiments on the DOTA, RSOD, and UCAS-AOD datasets demonstrated that our method’s average accuracy (mAP) values reached 0.728, 0.952, and 0.945, respectively, which were comparable to the existing state-of-the-art methods.
Funder
National Natural Science Foundation
General Program of the Natural Science Foundation of Hunan Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献