Affiliation:
1. School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232000, China
2. Institute of Environment-Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
Abstract
To resolve the problems associated with the small target presented by printed circuit board surface defects and the low detection accuracy of these defects, the printed circuit board surface-defect detection network DCR-YOLO is designed to meet the premise of real-time detection speed and effectively improve the detection accuracy. Firstly, the backbone feature extraction network DCR-backbone, which consists of two CR residual blocks and one common residual block, is used for small-target defect extraction on printed circuit boards. Secondly, the SDDT-FPN feature fusion module is responsible for the fusion of high-level features to low-level features while enhancing feature fusion for the feature fusion layer, where the small-target prediction head YOLO Head-P3 is located, to further enhance the low-level feature representation. The PCR module enhances the feature fusion mechanism between the backbone feature extraction network and the SDDT-FPN feature fusion module at different scales of feature layers. The C5ECA module is responsible for adaptive adjustment of feature weights and adaptive attention to the requirements of small-target defect information, further enhancing the adaptive feature extraction capability of the feature fusion module. Finally, three YOLO-Heads are responsible for predicting small-target defects for different scales. Experiments show that the DCR-YOLO network model detection map reaches 98.58%; the model size is 7.73 MB, which meets the lightweight requirement; and the detection speed reaches 103.15 fps, which meets the application requirements for real-time detection of small-target defects.
Funder
Key Research and Development Program of Anhui Province
Research and Development Special Fund for Environmentally Friendly Materials and Occupational Health Research Institute of Anhui University of Science and Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献