Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient

Author:

Adeleye Olutayo A.ORCID,Bamiro Oluyemisi A.,Albalawi Doha A.,Alotaibi Amenah S.,Iqbal HaroonORCID,Sanyaolu Saheed,Femi-Oyewo Mbang N.,Sodeinde Kehinde O.,Yahaya Zwanden S.,Thiripuranathar GobikaORCID,Menaa FaridORCID

Abstract

Cellulose is a non-toxic, bio-degradable, and renewable biopolymer which is abundantly available in nature. The most common source of commercial microcrystalline cellulose is fibrous wood pulp. Cellulose and its derivatives have found wide commercial applications in the pharmaceutical, cosmetic, food, paper, textile, and engineering industries. This study aims to isolate and characterize cellulose forms from cocoa pod husk (CPH) and to assess its mechanical and disintegration properties as a direct compression excipient in metronidazole tablets. Two isolated cellulose types (i.e., cocoa alpha-cellulose (CAC) and cocoa microcrystalline cellulose (C-MCC)) were compared with avicel (AV). CAC and C-MCC were characterized for their physicochemical properties using Scanning Electron Microscopy (SEM), FTIR spectroscopy, Differential Scanning Calorimetry (DSC), and X-Ray Powder Diffraction (XRD). Metronidazole tablets were produced by direct compression with cellulose. The mechanical and disintegration properties of the tablets were evaluated. CAC and C-MCC yield was 42.3% w/w and 38.25% w/w, respectively. Particle diameters were significantly different with CAC (282.22 μm) > C-MCC (161.32 μm) > AV (72.51 μm). CAC and C-MCC had a better flow than AV. SEM revealed the fibrous nature of the cellulose. FTIR and XRD analysis confirmed the presence of cellulose with crystallinity index of 69.26%, 43.83%, and 26.32% for AV, C-MCC, and CAC, respectively. C-MCC and AV are more crystalline and thermally stable at high temperatures compared to CAC. The mechanical and disintegration properties of C-MCC and AV tablets complied with pharmacopeia specifications. Taken together, C-MCC isolated from CPH displayed some fundamental characteristics suitable for use as a pharmaceutical excipient and displayed better properties compared to that of AV.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3