Numerical Investigation of T-Shaped Microfluidic Oscillator with Viscoelastic Fluid

Author:

Yuan ChaoORCID,Zhang Hongna,Li Xiaobin,Oishi Masamichi,Oshima Marie,Yao Qinghe,Li Fengchen

Abstract

Oscillatory flow has many applications in micro-scaled devices. The methods of realizing microfluidic oscillators reported so far are typically based on the impinging-jet and Coanda effect, which usually require the flow Reynolds number to be at least at the order of unity. Another approach is to introduce elastomeric membrane into the microfluidic units; however, the manufacturing process is relatively complex, and the membrane will become soft after long-time operation, which leads to deviation from the design condition. From the perspective of the core requirement of a microfluidic circuit, i.e., nonlinearity, the oscillatory microfluidic flow can be realized via the nonlinear characteristics of viscoelastic fluid flow. In this paper, the flow characteristics of viscoelastic fluid (Boger-type) in a T-shaped channel and its modified structures are studied by two-dimensional direct numerical simulation (DNS). The main results obtained from the DNS study are as follows: (1) Both Weissenberg (Wi) number and viscosity ratio need to be within a certain range to achieve a periodic oscillating performance; (2) With the presence of the dynamic evolution of the pair of vortices in the upstream near the intersection, the oscillation intensity increases as the elasticity-dominated area in the junction enlarges; (3) Considering the simplicity of the T-type channel as a potential oscillator, the improved structure should have a groove carved toward the entrance near the upper wall. The maximum oscillation intensity measured by the standard deviation of flow rate at outlet is increased by 129% compared with that of the original standard T-shaped channel under the same condition. To sum up, with Wi number and viscosity ratio within a certain range, the regular periodic oscillation characteristics of Oldroyd-B type viscoelastic fluid flow in standard T-shaped and its modified channels can be obtained. This structure can serve as a passive microfluidic oscillator with great potential value at an extremely low Reynolds number, which has the advantages of simplicity, no moving parts and fan-out of two.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3