Design and Fabrication of Double-Layer Crossed Si Microchannel Structure

Author:

Wang Yipeng,Zhou Weijian,Ma Tieying

Abstract

A four-step etching method is used to prepare the double-layer cross Si microchannel structure. In the first etching step, a <100> V-groove structure is etched on (100) silicon, and the top channel is formed after thermal oxidation with the depth of the channel and the slope of its sidewall being modulated by the etching time. The second etching step is to form a sinking substrate, and then the third step is to etch the bottom channel at 90° (<100> direction) and 45° (<110> direction) with the top channel, respectively. Hence, the bottom channel on the sink substrate is half-buried into the top channel. Undercut characteristic of 25% TMAH is used to perform the fourth step, etching through the overlapping part of the two layers of channels to form a double-layer microchannel structure. Different from the traditional single-layer microchannels, the double-layer crossed microchannels are prepared by the four-step etching method intersect in space but are not connected, which has structural advantages. Finally, when the angle between the top and bottom is 90°, the root cutting time at the intersection is up to 6 h, making the width of the bottom channel 4–5 times that of the top channel. When the angle between the top and bottom is 45°, the root cutting time at the intersection is only 4 h, and due to the corrosion along (111), the corrosion speed of the sidewall is very slow and the consistency of the width of the upper and lower channels is better than 90° after the end. Compared with the same-plane cross channel structure, the semiburied microchannel structure avoids the V-shaped path at the intersection, and the fluid can pass through the bottom channel in a straight line and cross with the top channel without overlapping, which has a structural advantage. If applied to microfluidic technology, high-efficiency delivery of two substances can be carried out independently in the same area; if applied to microchannel heat dissipation technology, the heat conduction area of the fluid can be doubled under the same heat dissipation area, thereby increasing the heat dissipation efficiency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3