The Biological Durability of Thermally- and Chemically-Modified Black Pine and Poplar Wood Against Basidiomycetes and Mold Action

Author:

Kamperidou VasilikiORCID

Abstract

Wood of black pine and poplar species were subjected to thermal modification under variant conditions, while subsequently, a number of the thermally-modified black pine specimens were subjected to surface modification with organosilane solutions, and the biological resistances of the different materials were examined using laboratory agar block tests against the action of basidiomycetes and microfungi. Thermally-modified pine specimens were exposed to the brown rot fungi Coniophora puteana and Oligoporus placenta, whereas poplar wood was exposed to the white rot fungus Trametes versicolor and O. placenta. Regarding the biological durability of thermally-chemically-treated pine wood with organosilanes, it was tested against the action of C. puteana. Additionally, both of the thermally-treated wood species, as well as thermally-chemically-treated pine wood were exposed to a microfungi mixture, so that the wood treatments efficacy would be evaluated through a visual assessment of fungal growth on the specimen’s surface The thermal treatments seem to increase the biological resistance of black pine against C. puteana by 9.65–36.73% compared to unmodified wood. The most significant increase in biological durability among all the thermally-treated wood categories was recorded by O. placenta, with 28.75–68.46% lower mass losses in treated pine specimens and 31.98–64.72% in thermally-treated poplar, respectively, compared to unmodified wood. The resistance of treated poplar against T. versicolor was also found increased (13.25–46.08%), compared to control. Thermal modification affected positively the biological resistance of both species, though it did not manage to protect effectively pine and poplar wood from the microfungi action. The combination of thermal and organosilanes treatment revealed a significant improvement of the durability of pine wood compared to? control (45.68–87.83% lower mass losses against C. puteana), as well as against the microfungi action, with the presence of benzin to have a positive effect on the silanes solutions performance and protective action.

Publisher

MDPI AG

Subject

Forestry

Reference37 articles.

1. Wood Modification, Chemical, Thermal and other Processes;Hill,2006

2. Optimisation of a two-stage heat treatment process: durability aspects

3. Thermal Treatment of Wood: European Processes and Their Background;Militz,2002

4. Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples

5. Wood modification by heat treatment-A review;Esteves;Bioresources,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3