Abstract
Maritime traffic and fishing activities have accelerated considerably over the last decade, with a consequent impact on the environment and marine resources. Meanwhile, a growing number of ship-reporting technologies and remote-sensing systems are generating an overwhelming amount of spatio-temporal and geographically distributed data related to large-scale vessels and their movements. Individual technologies have distinct limitations but, when combined, can provide a better view of what is happening at sea, lead to effectively monitor fishing activities, and help tackle the investigations of suspicious behaviors in close proximity of managed areas. The paper integrates non-cooperative Synthetic Aperture Radar (SAR) Sentinel-1 images and cooperative Automatic Identification System (AIS) data, by proposing two types of associations: (i) point-to-point and (ii) point-to-line. They allow the fusion of ship positions and highlight “suspicious” AIS data gaps in close proximity of managed areas that can be further investigated only once the vessel—and the gear it adopts—is known. This is addressed by a machine-learning approach based on the Fast Fourier Transform that classifies single sea trips. The approach is tested on a case study in the central Adriatic Sea, automatically reporting AIS-SAR associations and seeking ships that are not broadcasting their positions (intentionally or not). Results allow the discrimination of collaborative and non-collaborative ships, playing a key role in detecting potential suspect behaviors especially in close proximity of managed areas.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference51 articles.
1. [Mis-]managing Fisheries on the West Coast of Ireland in the Nineteenth Century
2. Dwindling fish numbers already of concern in 1883
3. Review of the state of world marine fishery resources,2011
4. The State of Mediterranean and Black Sea Fisheries 2020
5. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution Adopted by the General Assembly,2015
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献