Predicting Vessel Trajectories Using ASTGCN with StemGNN-Derived Correlation Matrix

Author:

Zhang Ran1,Chen Xiaohui1,Ye Lin1ORCID,Yu Wentao12,Zhang Bing1,Liu Junnan3ORCID

Affiliation:

1. Institute of Data and Target Engineering, Information Engineering University, Zhengzhou 450001, China

2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

3. Institute of Geo-Science and Technology, Zhengzhou University, Zhengzhou 450001, China

Abstract

This study proposes a vessel position prediction method using attention spatiotemporal graph convolutional networks, which addresses the issue of low prediction accuracy due to less consideration of inter-feature dependencies in current vessel trajectory prediction methods. First, the method cleans the vessel trajectory data and uses the Time-ratio trajectory compression algorithm to compress the trajectory data, avoiding data redundancy and providing feature points for vessel trajectories. Second, the Spectral Temporal Graph Neural Network (StemGNN) extracts the correlation matrix that describes the relationship between multiple variables as a priori matrix input to the prediction model. Then the vessel trajectory prediction model is constructed, and the attention mechanism is added to the spatial and temporal dimensions of the trajectory data based on the spatio-temporal graph convolutional network at the same time as the above operations are performed on different time scales. Finally, the features extracted from different time scales are fused through the full connectivity layer to predict the future trajectories. Experimental results show that this method achieves higher accuracy and more stable prediction results in trajectory prediction. The attention-based spatio-temporal graph convolutional networks effectively capture the spatio-temporal correlations of the main features in vessel trajectories, and the spatio-temporal attention mechanism and graph convolution have certain interpretability for the prediction results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3