Abstract
As an important application of wireless sensor networks (WSNs), deployment of mobile sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian graph, the point sweep coverage problem of deploying the fewest sensors to periodically cover a set of PoIs is known to be Non-deterministic Polynomial Hard (NP-hard), even if all sensors have the same velocity. In this paper, we consider the problem of finding the set of PoIs on a line periodically covered by a given set of mobile sensors that has the maximum sum of weight. The problem is first proven NP-hard when sensors are with different velocities in this paper. Optimal and approximate solutions are also presented for sensors with the same and different velocities, respectively. For M sensors and N PoIs, the optimal algorithm for the case when sensors are with the same velocity runs in O(MN) time; our polynomial-time approximation algorithm for the case when sensors have a constant number of velocities achieves approximation ratio 12; for the general case of arbitrary velocities, 12α and 12(1−1/e) approximation algorithms are presented, respectively, where integer α≥2 is the tradeoff factor between time complexity and approximation ratio.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献