Corporate Default Predictions Using Machine Learning: Literature Review

Author:

Kim Hyeongjun,Cho Hoon,Ryu DoojinORCID

Abstract

Corporate default predictions play an essential role in each sector of the economy, as highlighted by the global financial crisis and the increase in credit risk. This study reviews the corporate default prediction literature from the perspectives of financial engineering and machine learning. We define three generations of statistical models: discriminant analyses, binary response models, and hazard models. In addition, we introduce three representative machine learning methodologies: support vector machines, decision trees, and artificial neural network algorithms. For both the statistical models and machine learning methodologies, we identify the key studies used in corporate default prediction. By comparing these methods with findings from the interdisciplinary literature, our review suggests some new tasks in the field of machine learning for predicting corporate defaults. First, a corporate default prediction model should be a multi-period model in which future outcomes are affected by past decisions. Second, the stock price and the corporate value determined by the stock market are important factors to use in default predictions. Finally, a corporate default prediction model should be able to suggest the cause of default.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference60 articles.

1. Financial Ratios As Predictors of Failure

2. On the pricing of corporate debt: The risk structure of interest rates;Merton;J. Financ.,1974

3. Robustness of distance-to-default

4. The expected cost of default

5. Stock liquidity and default risk

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3