A Multi-Head LSTM Architecture for Bankruptcy Prediction with Time Series Accounting Data

Author:

Pellegrino Mattia1ORCID,Lombardo Gianfranco1ORCID,Adosoglou George2,Cagnoni Stefano1ORCID,Pardalos Panos M.2,Poggi Agostino1ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy

2. Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

With the recent advances in machine learning (ML), several models have been successfully applied to financial and accounting data to predict the likelihood of companies’ bankruptcy. However, time series have received little attention in the literature, with a lack of studies on the application of deep learning sequence models such as Recurrent Neural Networks (RNNs) and the recent Attention-based models in general. In this research work, we investigated the application of Long Short-Term Memory (LSTM) networks to exploit time series of accounting data for bankruptcy prediction. The main contributions of our work are the following: (a) We proposed a multi-head LSTM that models each financial variable in a time window independently and compared it with a single-input LSTM and other traditional ML models. The multi-head LSTM outperformed all the other models. (b) We identified the optimal time series length for bankruptcy prediction to be equal to 4 years of accounting data. (c) We made public the dataset we used for the experiments which includes data from 8262 different public companies in the American stock market generated in the period between 1999 and 2018. Furthermore, we proved the efficacy of the multi-head LSTM model in terms of fewer false positives and the better division of the two classes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3