A Transfer Learning Architecture Based on a Support Vector Machine for Histopathology Image Classification

Author:

Fan Jiayi,Lee JangHyeon,Lee YongKeun

Abstract

Recently, digital pathology is an essential application for clinical practice and medical research. Due to the lack of large annotated datasets, the deep transfer learning technique is often used to classify histopathology images. A softmax classifier is often used to perform classification tasks. Besides, a Support Vector Machine (SVM) classifier is also popularly employed, especially for binary classification problems. Accurately determining the category of the histopathology images is vital for the diagnosis of diseases. In this paper, the conventional softmax classifier and the SVM classifier-based transfer learning approach are evaluated to classify histopathology cancer images in a binary breast cancer dataset and a multiclass lung and colon cancer dataset. In order to achieve better classification accuracy, a methodology that attaches SVM classifier to the fully-connected (FC) layer of the softmax-based transfer learning model is proposed. The proposed architecture involves a first step training the newly added FC layer on the target dataset using the softmax-based model and a second step training the SVM classifier with the newly trained FC layer. Cross-validation is used to ensure no bias for the evaluation of the performance of the models. Experimental results reveal that the conventional SVM classifier-based model is the least accurate on either binary or multiclass cancer datasets. The conventional softmax-based model shows moderate classification accuracy, while the proposed synthetic architecture achieves the best classification accuracy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3