Integration of DE Algorithm with PDC-APF for Enhancement of Contour Path Planning of a Universal Robot

Author:

Kazim Issraa JwadORCID,Tan Yuegang,Qaseer LaythORCID

Abstract

In the robotic engineering field, the main target, especially in industry, manufacturing, and surgical operations, is reaching the optimal performance of manipulators. The purpose of this paper is to quantify the contour tracking performance of collaborative universal manipulator robot (UR5) by setting the gain of position domain controller. In order to improve and enhance the track of manipulator in experimental applications we utilize differential evolution (DE) optimization, using MATLAB toolbox with an applied robot operating system (ROS). The adopted current approach does not only optimize the gain of position domain controller but also prevent collisions by detecting a “border crossing” without turning off the manipulator and allowing the automation agent to be on the scene, coexisting in harmonic mode and avoiding collisions. This requires the implementation of an algorithm that detects an obstacle to avoid anticipated collisions. For this purpose, the adopted algorithm uses the DE algorithm to modify the artificial potential field (APF). The results of this paper present that on one hand, meta-heuristic optimization algorithm features give the best performance indices for linear and non-linear contours, and on the other hand, DE algorithm features give good modification to APF to generate collision free contour path planning.

Funder

Open Research Fundation of Advanced Innovation Center for Intelligent Robotics and Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Automatic Parking Path Planning and Tracking Control Research for Intelligent Vehicles

2. Robotics: Modelling, Planning and Control;Siciliano,2010

3. The Mechatronics Handbook;Bishop,2002

4. Generating Task-Oriented Interactions of Service Robots

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3