Collision Avoidance for a Selective Compliance Assembly Robot Arm Manipulator Using Topological Path Planning

Author:

Batista Josias G.1ORCID,Ramalho Geraldo L. B.1ORCID,Torres Marcelo A.1ORCID,Oliveira Anderson L.1ORCID,Ferreira Daniel S.2ORCID

Affiliation:

1. Automation and Industrial Networks Laboratory—Department of Industry, Campus Fortaleza, Federal Institute of Education, Science and Technology of Ceará—IFCE, Fortaleza 60.040-215, CE, Brazil

2. Department of Computing Science, Campus Maracanaú, Federal Institute of Education, Science and Technology of Ceará—IFCE, Maracanaúe 61.939-140, CE, Brazil

Abstract

Industrial applications with robotic manipulators have grown and made production systems increasingly efficient. However, there are still some limitations that can delay production, causing losses. Several factors, such as accidents and collisions of manipulator robots with operators and other machines, can cause unforeseen stops. Thus, this work aims to develop a trajectory planning method to avoid collisions applied to a selective compliance assembly robot arm (SCARA) robotic manipulator in the context of collaborative robotics. The main contribution of this paper is a path planning method based on mathematical morphology, named topological path planning (TPP). Through some evaluation metrics such as the number of path points, computing time, distance, standard deviation of the joint acceleration, and maximum acceleration rate along the path, we show that TPP is a collision-free, deterministic, and predictable route planning. In our experiments, our proposal presented better results for applications in industrial robotic manipulators when compared to the probabilistic roadmap method (PRM) and TPP*, a particular case of TPP that is similar to the generalized Voronoi diagram (GVD).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3