Evaluation of the Absorption of Methionine Carried by Mineral Clays and Zeolites in Porcine Ex Vivo Permeability Models

Author:

Giromini CarlottaORCID,Tretola MarcoORCID,Cristiani CinziaORCID,Finocchio Elisabetta,Silacci Paolo,Panseri SaraORCID,Dell’Anno MatteoORCID,Baldi Antonella,Rossi LucianaORCID

Abstract

Supplemental dietary amino acids (AAs) need to be provided in a form that prevents their degradation along the gastrointestinal tract to guarantee their high bioavailability and bioactivity. In this study, methionine (Met) protected via organo-clay intercalation (natural carriers) has been developed as a sustainable alternative to polymeric coating. Specifically, two different bentonite-zeolite-based mineral clays were tested, Adsorbene (ADS) and BioKi (BIO). Briefly, 1 g of the carrier (ADS or BIO) was contacted with 50 mL of an aqueous solution at a pH of 3.0, 5.8, and 8.9. Solid-liquid separation was conducted. The released Met in the liquid phase was analysed by Chemical Oxygen Demand, while residual Met in the solid phase was analysed by Fourier Transform Infra-Red (FT-IR) spectroscopy. The effect of Met-ADS complex on cell viability was tested on IPEC-J2 cells incubated 3 h with Met-ADS 2.5 mM. Jejunum segments obtained by entire male pigs (Swiss Large White, body weight 100 ± 5 kg) were used as ex vivo models to compare the absorption of 2.5 mM Met released by ADS with 2.5 mM free Met and its influence on epithelial integrity in perfusion Ussing chambers. The carriers released a very low amount of Met and Met-BIO interaction was stronger than Met-ADS. The maximum release of Met was at pH 3, with 3% and 6% of Met release from Met-BIO and Met-ADS, respectively. Cell viability experiments revealed that Met-ADS did not alter cell metabolic activity. No differences in Met absorption and intestinal epithelial integrity were observed ex vivo between free Met and Met-ADS. This study provided new insights into the release of Met from natural clays such as ADS and BIO, the safety of its use in the porcine intestine and the ability of ADS-released Met to absorb to the same extent as the free Met in porcine jejunum.

Funder

Lombardy Region and European Regional Development Fund (ERDF) under grant: FoodTech Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3