Safe Vehicle Trajectory Planning in an Autonomous Decision Support Framework for Emergency Situations

Author:

Xu WeiORCID,Sainct RémiORCID,Gruyer DominiqueORCID,Orfila OlivierORCID

Abstract

For a decade, researchers have focused on the development and deployment of road automated mobility. In the development of autonomous driving embedded systems, several stages are required. The first one deals with the perception layers. The second one is dedicated to the risk assessment, the decision and strategy layers and the optimal trajectory planning. The last stage addresses the vehicle control/command. This paper proposes an efficient solution to the second stage and improves a virtual Cooperative Pilot (Co-Pilot) already proposed in 2012. This paper thus introduces a trajectory planning algorithm for automated vehicles (AV), specifically designed for emergency situations and based on the Autonomous Decision-Support Framework (ADSF) of the EU project Trustonomy. This algorithm is an extended version of Elastic Band (EB) with no fixed final position. A set of trajectory nodes is iteratively deduced from obstacles and constraints, thus providing flexibility, fast computation, and physical realism. After introducing the project framework for risk management and the general concept of ADSF, the emergency algorithm is presented and tested under Matlab software. Finally, the Decision-Support framework is implemented under RTMaps software and demonstrated within Pro-SiVIC, a realistic 3D simulation environment. Both the previous virtual Co-Pilot and the new emergency algorithm are combined and used in a near-accident situation and shown in different risky scenarios.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference81 articles.

1. Info-Mobility: A Concept for Advanced Automotive Functions toward the 21st Century;Tsugawa,1991

2. Autonomous Driving: Technical, Legal and Social Aspects;Maurer,2016

3. Cooperative autonomous driving - Intelligent vehicles sharing city roads cooperative autonomous driving

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing inverse motion planning technique for autonomous vehicles using integral nonlinear constraints;Fundamental Research;2023-12

2. Adaptive Path Planning for Autonomous Vehicles in Complex Traffic Scenarios;2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques (EASCT);2023-10-20

3. Generic Simulation Framework for Evaluation Process: Applied to AI-powered Visual Perception System in Autonomous Driving;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. Application of Responsibility-Sensitive Safety in Areas with Limited Visibility: Occlusions in RSS;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

5. Building Critical Testing Scenarios for Autonomous Driving from Real Accidents;Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3