Abstract
For a decade, researchers have focused on the development and deployment of road automated mobility. In the development of autonomous driving embedded systems, several stages are required. The first one deals with the perception layers. The second one is dedicated to the risk assessment, the decision and strategy layers and the optimal trajectory planning. The last stage addresses the vehicle control/command. This paper proposes an efficient solution to the second stage and improves a virtual Cooperative Pilot (Co-Pilot) already proposed in 2012. This paper thus introduces a trajectory planning algorithm for automated vehicles (AV), specifically designed for emergency situations and based on the Autonomous Decision-Support Framework (ADSF) of the EU project Trustonomy. This algorithm is an extended version of Elastic Band (EB) with no fixed final position. A set of trajectory nodes is iteratively deduced from obstacles and constraints, thus providing flexibility, fast computation, and physical realism. After introducing the project framework for risk management and the general concept of ADSF, the emergency algorithm is presented and tested under Matlab software. Finally, the Decision-Support framework is implemented under RTMaps software and demonstrated within Pro-SiVIC, a realistic 3D simulation environment. Both the previous virtual Co-Pilot and the new emergency algorithm are combined and used in a near-accident situation and shown in different risky scenarios.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference81 articles.
1. Info-Mobility: A Concept for Advanced Automotive Functions toward the 21st Century;Tsugawa,1991
2. Autonomous Driving: Technical, Legal and Social Aspects;Maurer,2016
3. Cooperative autonomous driving - Intelligent vehicles sharing city roads cooperative autonomous driving
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献