Abstract
A three-dimensional survey of natural caves is often a difficult task due to the roughness of the investigated area and the problems of accessibility. Traditional adopted techniques allow a simplified acquisition of the topography of caves characterized by an oversimplification of the geometry. Nowadays, the advent of LiDAR and Structure from Motion applications eased three-dimensional surveys in different environments. In this paper, we present a comparison between other three-dimensional survey systems, namely a Terrestrial Laser Scanner, a SLAM-based portable instrument, and a commercial photo camera, to test their possible deployment in natural caves survey. We presented a comparative test carried out in a tunnel stretch to calibrate the instrumentation on a benchmark site. The choice of the site is motivated by its regular geometry and easy accessibility. According to the result obtained in the calibration site, we presented a methodology, based on the Structure from Motion approach that resulted in the best compromise among accuracy, feasibility, and cost-effectiveness, that could be adopted for the three-dimensional survey of complex natural caves using a sequence of images and the structure from motion algorithm. The methods consider two different approaches to obtain a low resolution complete three-dimensional model of the cave and ultra-detailed models of most peculiar cave morphological elements. The proposed system was tested in the Gazzano Cave (Piemonte region, Northwestern Italy). The obtained result is a three-dimensional model of the cave at low resolution due to the site’s extension and the remarkable amount of data. Additionally, a peculiar speleothem, i.e., a stalagmite, in the cave was surveyed at high resolution to test the proposed high-resolution approach on a single object. The benchmark and the cave trials allowed a better definition of the instrumentation choice for underground surveys regarding accuracy and feasibility.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献