A Review of Techniques for 3D Reconstruction of Indoor Environments

Author:

Kang Zhizhong,Yang JuntaoORCID,Yang Zhou,Cheng Sai

Abstract

Indoor environment model reconstruction has emerged as a significant and challenging task in terms of the provision of a semantically rich and geometrically accurate indoor model. Recently, there has been an increasing amount of research related to indoor environment reconstruction. Therefore, this paper reviews the state-of-the-art techniques for the three-dimensional (3D) reconstruction of indoor environments. First, some of the available benchmark datasets for 3D reconstruction of indoor environments are described and discussed. Then, data collection of 3D indoor spaces is briefly summarized. Furthermore, an overview of the geometric, semantic, and topological reconstruction of the indoor environment is presented, where the existing methodologies, advantages, and disadvantages of these three reconstruction types are analyzed and summarized. Finally, future research directions, including technique challenges and trends, are discussed for the purpose of promoting future research interest. It can be concluded that most of the existing indoor environment reconstruction methods are based on the strong Manhattan assumption, which may not be true in a real indoor environment, hence limiting the effectiveness and robustness of existing indoor environment reconstruction methods. Moreover, based on the hierarchical pyramid structures and the learnable parameters of deep-learning architectures, multi-task collaborative schemes to share parameters and to jointly optimize each other using redundant and complementary information from different perspectives show their potential for the 3D reconstruction of indoor environments. Furthermore, indoor–outdoor space seamless integration to achieve a full representation of both interior and exterior buildings is also heavily in demand.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3