Assessment of Aircraft Engine Blade Inspection Performance Using Attribute Agreement Analysis

Author:

Aust JonasORCID,Pons DirkORCID

Abstract

Background—Visual inspection is an important element of aircraft engine maintenance to assure flight safety. Predominantly performed by human operators, those maintenance activities are prone to human error. While false negatives imply a risk to aviation safety, false positives can lead to increased maintenance cost. The aim of the present study was to evaluate the human performance in visual inspection of aero engine blades, specifically the operators’ consistency, accuracy, and reproducibility, as well as the system reliability. Methods—Photographs of 26 blades were presented to 50 industry practitioners of three skill levels to assess their performance. Each image was shown to each operator twice in random order, leading to N = 2600 observations. The data were statistically analysed using Attribute Agreement Analysis (AAA) and Kappa analysis. Results—The results show that operators were on average 82.5% consistent with their serviceability decision, while achieving an inspection accuracy of 67.7%. The operators’ reproducibility was 15.4%, as was the accuracy of all operators with the ground truth. Subsequently, the false-positive and false-negative rates were analysed separately to the overall inspection accuracy, showing that 20 operators (40%) achieved acceptable performances, thus meeting the required standard. Conclusions—In aviation maintenance the false-negative rate of <5% as per Aerospace Standard AS13100 is arguably the single most important metric since it determines the safety outcomes. The results of this study show acceptable false-negative performance in 60% of appraisers. Thus, there is the desirability to seek ways to improve the performance. Some suggestions are given in this regard.

Funder

Christchurch Engine Centre

Publisher

MDPI AG

Subject

Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality

Reference68 articles.

1. Analysis of trends in aviation maintenance risk: An empirical approach

2. Managing Maintenance Error: A Practical Guide;Reason,2017

3. CAP 1367–Aircraft Maintenance Incident Analysishttps://publicapps.caa.co.uk/modalapplication.aspx?appid=11&mode=detail&id=7185

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3