Experimental Investigation of the Supercavitation and Hydrodynamic Characteristics of High-Speed Projectiles with Hydrophobic and Hydrophilic Coatings

Author:

Jia HuixiaORCID,Xie Rishan,Zhou Yangjie

Abstract

Supercavitation technology has important application value in military and national defence fields because of its huge potential in drag reduction, while the cavitation around underwater moving objects may be affected by the surface properties of objects. In this paper, the supercavitation characteristics and hydrodynamics of a projectile with hydrophobic and hydrophilic surface coatings were experimentally studied using a high-speed camera. The supercavitation evolution, cavitation size, velocity change, drag force coefficient, and ballistic deflection of projectiles in different water depths are compared and analyzed. The results show that the length and diameter of the supercavity increase with the decrease in water depth. At the same water depth and cavitation number, the length and diameter of the supercavitation of the projectile with hydrophobic coating were greater than those of the projectile with hydrophilic coating, and the drag force coefficient of the hydrophobic projectile was obviously smaller than that of the hydrophilic projectile. Under the working conditions of 6.67D, 16.7D, and 33.3D, the drag force coefficient of the hydrophobic projectile could be reduced by about 20–40% compared with that of the hydrophilic projectile. The maximal reduction in drag force coefficient was up to 40% at σ = 0.34 under a water depth of 33.3D. The velocity attenuation of hydrophobic projectile was about 20% slower than that of hydrophilic projectile. In addition, the ballistic stability of hydrophobic coated projectiles was better than that of hydrophilic coated projectiles in the different water depths observed in the paper.

Funder

National Natural Science Foundation of China

Zhejiang Sci-Tech University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference31 articles.

1. Logvinovich, G.V. (1972). Hydrodynamics of Free-Boundary Flows, IPST Press. [1st ed.].

2. Waugh, J.G., and Stubstad, G.W. (1975). Hydroballistics Modeling.

3. Vlasenko, Y.D. (1998, January 7–10). Experimental investigations of high-speed unsteady supercavitating flows. Proceedings of the 2th International Symposium on Cavitation, Grenoble, France.

4. High-speed imaging of supercavitating underwater projectiles;Exp. Fluids,2001

5. An experimental research on the flow field of water entry by pressure measurements;Phys. Fluids,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3