Effect of superhydrophilic surface on the cavitation behaviors of rotating blades

Author:

Choi Hongseok,Oh Seungtae,Lee ChoongyeopORCID,Choi HaecheonORCID,Park HyungminORCID

Abstract

We experimentally confirmed the idea of mitigating (or delaying) the cavitation on the turbomachinery (rotating blades) by transforming the blade surface to be superhydrophilic, thereby the population of the cavitation nuclei is reduced near the surface. We focused on the changes in the cavitation incidence rate, amount of cavitation bubble, and bubble distribution on the superhydrophilic blade through the high-speed camera imaging, compared to the case with a regular (i.e., smooth) surface. With superhydrophilic blades, the cavitation incidence rate decreased significantly, indicating that fewer nuclei evolved into the actual cavitation bubbles. This is also associated with 8.6% delay of the critical rotational speed at which the cavitation process is almost completely established (incidence rate exceeds 80%), and the reduction in the total amount of cavitation bubbles was achieved as much as 18% (maximum 38% in the tested range of rotational Reynolds number). Additionally, the distribution of cavitation bubbles was generally pushed upstream, with fewer bubbles extending downstream, i.e., pushed away from the blade trailing edge. We believe the present results are promising enough to spur the follow-up investigation for the in-depth analysis and practical application toward the robust cavitation control without the substantial modulation of the geometry.

Funder

National Research Foundation of Korea

Institute of Engineering Research, Seoul National University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3