Variable Selection for Meaningful Clustering of Multitopic Territorial Data

Author:

Angerri Xavier1,Gibert Karina1ORCID

Affiliation:

1. Intelligent Data Science and Artificial Intelligence Research Center and Institut de Ciència i Tecnologia de la Sostenibilitat, Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain

Abstract

This paper proposes a new methodology to improve territorial cohesion in clustering processes where many variables from different topics are considered. Clustering techniques provide added value to identify typologies, but there are still unsolved challenges when data contain an unbalanced number of variables from different topics. The territorial feature selection method (TFSM) is presented as a method to select the representative variable of each topic such that the interpretability of resulting clusters is preserved and the geographical cohesion is improved with respect to classical approaches. This paper also introduces the thermometer as a new knowledge acquisition tool that allows experts to transfer semantics to the data mining process. TFSM proposes the index of potential explainability (Ek) as the criteria to select the most promising variables for clustering. Ek is based on the combination of inferential testing and metrics such as support. The proposal is applied with the INSESS-COVID19 database, where territorial groups of vulnerable populations were found. A set of 195 variables with 21 unbalanced thematic blocks is used to compare the results with a traditional multiview clustering analysis with promising results from both the geographical and the thematic point of view and the capacity to support further decision making.

Funder

Development Cooperation Centre (CCD) of the UPC

Generalitat de Catalunya with the predoc

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Preprocessing and Artificial Intelligence for increasing explainability in Mental Health;Angerri;Int. J. Artif. Intell. Tools,2023

2. Gibert, K., and Angerri, X. (2021). The INSESS-COVID19 Project. Evaluating the impact of the COVID19 in social vulnerability while preserving privacy of participants from minority subpopulations. Appl. Sci., 11.

3. Gibert, K., Codina, T., and Angerri Torredeflot, X. (2020). Informe INSESS-COVID19: Identificació de Necessitats Socials Emergents Com a Conseqüència de la COVID19 i Efecte Sobre els Serveis Socials del Territori, Intelligence Data Science and Artificial Intelligence Research Center (IDEAI).

4. Identifying nutritional patterns through integrative multiview clustering;Gibert;Artif. Intell. Res. Dev.,2015

5. A methodology to discover and understand complex patterns: Interpreted Integrative Multiview Clustering (I2MC);Gibert;Pattern Recognit. Lett.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3