The INSESS-COVID19 Project. Evaluating the Impact of the COVID19 in Social Vulnerability While Preserving Privacy of Participants from Minority Subpopulations

Author:

Gibert KarinaORCID,Angerri Xavier

Abstract

In this paper, the results of the project INSESS-COVID19 are presented, as part of a special call owing to help in the COVID19 crisis in Catalonia. The technological infrastructure and methodology developed in this project allows the quick screening of a territory for a quick a reliable diagnosis in front of an unexpected situation by providing relevant decisional information to support informed decision-making and strategy and policy design. One of the challenges of the project was to extract valuable information from direct participatory processes where specific target profiles of citizens are consulted and to distribute the participation along the whole territory. Having a lot of variables with a moderate number of citizens involved (in this case about 1000) implies the risk of violating statistical secrecy when multivariate relationships are analyzed, thus putting in risk the anonymity of the participants as well as their safety when vulnerable populations are involved, as is the case of INSESS-COVID19. In this paper, the entire data-driven methodology developed in the project is presented and the dealing of the small subgroups of population for statistical secrecy preserving described. The methodology is reusable with any other underlying questionnaire as the data science and reporting parts are totally automatized.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

1. An Epidemiological Neural Network Exploiting Dynamic Graph Structured Data Applied to the COVID-19 Outbreak

2. Environmental Data Science

3. Conti aTLP: A color-based model of uncertainty to evaluate the risk of decisions based on prototypes;Gibert;Artif. Intell. Commun.,2015

4. https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

5. The KDD process for extracting useful knowledge from volumes of data

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3