Enhanced Automated Deep Learning Application for Short-Term Load Forecasting

Author:

Laitsos Vasileios1,Vontzos Georgios1,Bargiotas Dimitrios1ORCID,Daskalopulu Aspassia1ORCID,Tsoukalas Lefteri H.2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece

2. Center for Intelligent Energy Systems (CiENS), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA

Abstract

In recent times, the power sector has become a focal point of extensive scientific interest, driven by a convergence of factors, such as mounting global concerns surrounding climate change, the persistent increase in electricity prices within the wholesale energy market, and the surge in investments catalyzed by technological advancements across diverse sectors. These evolving challenges have necessitated the emergence of new imperatives aimed at effectively managing energy resources, ensuring grid stability, bolstering reliability, and making informed decisions. One area that has garnered particular attention is the accurate prediction of end-user electricity load, which has emerged as a critical facet in the pursuit of efficient energy management. To tackle this challenge, machine and deep learning models have emerged as popular and promising approaches, owing to their having remarkable effectiveness in handling complex time series data. In this paper, the development of an algorithmic model that leverages an automated process to provide highly accurate predictions of electricity load, specifically tailored for the island of Thira in Greece, is introduced. Through the implementation of an automated application, an array of deep learning forecasting models were meticulously crafted, encompassing the Multilayer Perceptron, Long Short-Term Memory (LSTM), One Dimensional Convolutional Neural Network (CNN-1D), hybrid CNN–LSTM, Temporal Convolutional Network (TCN), and an innovative hybrid model called the Convolutional LSTM Encoder–Decoder. Through evaluation of prediction accuracy, satisfactory performance across all the models considered was observed, with the proposed hybrid model showcasing the highest level of accuracy. These findings underscore the profound significance of employing deep learning techniques for precise forecasting of electricity demand, thereby offering valuable insights with which to tackle the multifaceted challenges encountered within the power sector. By adopting advanced forecasting methodologies, the electricity sector moves towards greater efficiency, resilience and sustainability.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3