Video Anomaly Detection Based on Attention Mechanism

Author:

Zhang Qianqian1,Wei Hongyang1ORCID,Chen Jiaying2,Du Xusheng2ORCID,Yu Jiong2ORCID

Affiliation:

1. School of Software Engineering, Xinjiang University, Urumqi 830091, China

2. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

Abstract

Camera surveillance is widely used in residential areas, highways, schools and other public places. The monitoring and scanning of sudden abnormal events depend on humans. Human anomaly monitoring not only consumes a lot of manpower and time but also has a large error in anomaly detection. Video anomaly detection based on AE (Auto-Encoder) is currently the dominant research approach. The model has a highly symmetrical network structure in the encoding and decoding stages. The model is trained by learning standard video sequences, and the anomalous events are later determined in terms of reconstruction error and prediction error. However, in the case of limited computing power, the complex model will greatly reduce the detection efficiency, and unnecessary background information will seriously affect the detection accuracy of the model. This paper uses the AE loaded with dynamic prototype units as the basic model. We introduce an attention mechanism to improve the feature representation ability of the model. Deep separable convolution operation can effectively reduce the number of model parameters and complexity. Finally, we conducted experiments on three publicly available datasets of real scenarios (UCSD Ped1, UCSD Ped2 and CUHK Avenue). The experimental results show that compared with the baseline model, the accuracy of our model improved by 1.9%, 1.4% and 6.6%, respectively, across the three datasets. Compared with many popular models, the validity of our model in anomaly detection is verified.

Funder

The National Natural Science Foundation of China

The National Natural Science Foundation of China Project

Key R&D projects in Xinjiang Uygur Autonomous Region

Natural Science Foundation of Xinjiang Uygur Autonomous Region of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3