Affiliation:
1. School of Software Engineering, Xinjiang University, Urumqi 830091, China
2. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
Abstract
Camera surveillance is widely used in residential areas, highways, schools and other public places. The monitoring and scanning of sudden abnormal events depend on humans. Human anomaly monitoring not only consumes a lot of manpower and time but also has a large error in anomaly detection. Video anomaly detection based on AE (Auto-Encoder) is currently the dominant research approach. The model has a highly symmetrical network structure in the encoding and decoding stages. The model is trained by learning standard video sequences, and the anomalous events are later determined in terms of reconstruction error and prediction error. However, in the case of limited computing power, the complex model will greatly reduce the detection efficiency, and unnecessary background information will seriously affect the detection accuracy of the model. This paper uses the AE loaded with dynamic prototype units as the basic model. We introduce an attention mechanism to improve the feature representation ability of the model. Deep separable convolution operation can effectively reduce the number of model parameters and complexity. Finally, we conducted experiments on three publicly available datasets of real scenarios (UCSD Ped1, UCSD Ped2 and CUHK Avenue). The experimental results show that compared with the baseline model, the accuracy of our model improved by 1.9%, 1.4% and 6.6%, respectively, across the three datasets. Compared with many popular models, the validity of our model in anomaly detection is verified.
Funder
The National Natural Science Foundation of China
The National Natural Science Foundation of China Project
Key R&D projects in Xinjiang Uygur Autonomous Region
Natural Science Foundation of Xinjiang Uygur Autonomous Region of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献