Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi–Sugeno–Kang Fuzzy System with Type-1 Non-Singleton Inputs

Author:

Castorena Gerardo Armando Hernández1ORCID,Méndez Gerardo Maximiliano2ORCID,López-Juárez Ismael3ORCID,García María Aracelia Alcorta4ORCID,Martinez-Peon Dulce Citlalli2ORCID,Montes-Dorantes Pascual Noradino5ORCID

Affiliation:

1. Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, NL, Mexico

2. Departamento de Ingeniería Eléctrica y Electrónica, Instituto Tecnológico de Nuevo León, TecNM, Av. Eloy Cavazos 2001, Cd. Guadalupe CP 67170, NL, Mexico

3. Robotics and Advanced Manufacturing Department, CINVESTAV, Ramos Arizpe 25900, CH, Mexico

4. Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, NL, Mexico

5. Departamento de Ciencias Económico-Administrativas, Departamento de Educación a Distancia, Instituto Tecnológico de Saltillo, TecNM, Blvd. Venustiano Carranza, Priv. Tecnológico 2400, Saltillo CP 25280, CH, Mexico

Abstract

This paper presents the novel enhanced Wagner–Hagras interval type-3 Takagi–Sugeno–Kang fuzzy logic system with type-1 non-singleton inputs (EWH IT3 TSK NSFLS-1) that uses the backpropagation (BP) algorithm to train the antecedent and consequent parameters. The proposed methodology dynamically changes the parameters of only the alpha-0 level, minimizing some criterion functions as the current information becomes available for each alpha-k level. The novel fuzzy system was applied in two industrial processes and several fuzzy models were used to make comparisons. The experiments demonstrated that the proposed fuzzy system has a superior ability to predict the critical variables of the tested processes with lower prediction errors than those produced by the benchmark fuzzy systems.

Publisher

MDPI AG

Reference82 articles.

1. Anastasakis, V., and Mort, N. (2003, January 8–10). Prediction of the GSP-USD exchange rate using statistical and neural network models. Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmádena, Spain.

2. Hernandez, M.A., and Mendez, G.M. (2006, January 16–21). Modeling and prediction of the MXN-USA exchange rate using interval singleton type-2 fuzzy logic systems. Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada.

3. Non-linear financial time series forecasting: Application to the bel 20 stock market index;Lendasse;Eur. J. Econ. Soc. Syst.,2000

4. Dynamical Analysis of T–S Fuzzy Financial Systems: A Sampled-Data Control Approach;Thangavel;Int. J. Fuzzy Syst.,2022

5. Optimal type-3 fuzzy control and analysis of complicated financial systems;Xu;J. Intell. Fuzzy Syst.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3