Author:
Sun Youzhuang,Zhang Junhua,Yu Zhengjun,Liu Zhen,Yin Pengbo
Abstract
Porosity is a vital parameter in reservoir research. In the process of oil exploration, reservoir research is very important for oil and gas exploration. Because it is necessary to take cores for indoor test in order to accurately obtain the porosity value of cores, this process consumes significant manpower and material resources. Therefore, this paper introduces the method of machine learning to predict the porosity by using logging curves. This paper creatively develops a WOA (whale optimization algorithm) optimized Elman neural network model to predict porosity through logging parameters PE, DEN, M2R1, AC, GR, R25, R4 and CNL. Porosity measurement is constructed by taking cores for indoor experiments. It contains a total of 328 sample points. The data is divided into training set and test set. The logging parameters are used as the input parameters of the prediction model, and the porosity measured in the laboratory are used as the output parameter. In order to evaluate the performance of the model, RMSE, R2, MAE and VAF evaluation indexes are introduced to evaluate. This paper also introduces the non-optimized Elman neural network and BP neural network to compare with this optimization model. The research shows that the WOA algorithm optimizes the super parameters of the Elman neural network, so that the performance of the WOA–Elman model is better than the Elman neural network model and the BP neural network model.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference33 articles.
1. A Critical Review of Core Analysis Techniques
2. Sidewall Coring: Advanced In-situ Freeze-Core Technique;Arora;Proceedings of the International Petroleum Technology Conference,2011
3. High resolution cuttings analysis for well placement in the Uinta Basin;Permata;Proceedings of the Unconventional Resources Technology Conference,2020
4. Porosity from seismic data: A geostatistical approach
5. A Review of Permeability-Prediction Methods for Carbonate Reservoirs Using Well-Log Data
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献