Rheological characteristics and behaviour prediction of lubricating grease for RV reducer across a wide temperature range

Author:

Jiang Benchi1,Zhou Yansheng1ORCID,Tu Zhijian2,Pan Jiabao1ORCID

Affiliation:

1. School of Mechanical Engineering Anhui Polytechnic University Wuhu Anhui People's Republic of China

2. Wuhu Saibao Robot Industry Technology Research Institute Co, Ltd Wuhu Anhui People's Republic of China

Abstract

AbstractGrease in the normal operation of the rotate vector (RV) reducer has a role that cannot be ignored, for the variable working conditions of the RV reducer, the performance of the lubricant changes directly affect its reliable operation. Therefore, the study of the rheological properties of the grease has become the focus of the study of RV reducer performance. Here, SK‐1A grease is taken as the research object, and its rheological characteristics under wide temperature range working conditions (−20–40°C) are investigated through rheological experiments to analyze the potential influence of the performance of RV reducer. However, the ordinary way of research is too complicated to better research the rheological properties of grease for a variety of working conditions. The Elman neural network (ENN) model was used to predict the rheological properties, and the results were compared with those of back propagation (BP) and radial basis function (RBF) neural networks. The results demonstrate that the ENN model demonstrates high prediction accuracy for grease rheological property prediction by comparing three types of predictions. This method can provide a theoretical reference for the accurate prediction of the rheological properties of lubricating grease affected by complex multifactors.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3