Abstract
The measurement of the growth rate, or the so-called inverse period, of a nuclear reactor is crucial for safety monitoring and control purposes. Due to the inevitable statistical fluctuation of neutron flux at low power-levels, it is difficult to precisely estimate the inverse period from the pulse counting data in the source range. Motivated by the equivalence of the measurement of inverse period and the differentiation of the logarithm of pulse count, a new differentiator is proposed, which is finite-time convergent with a bounded steady estimation error. The feasibility of this newly-built finite-time differentiator is verified by numerical simulation. Then, based on the pulse count data recorded during the startup of a test reactor, the differentiator is used to estimate the inverse period and its derivative, as well as the period and the reactivity of the reactor. The results show that the differentiator is capable of providing a satisfactory estimation of signal derivatives under strong noise.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献