Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control

Author:

Dong Zhe1ORCID,Cheng Zhonghua1,Zhu Yunlong1,Huang Xiaojin1,Dong Yujie1ORCID,Zhang Zuoyi1

Affiliation:

1. Institute of Nuclear and New Energy Technology, Collaborative Innovation Centre of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China

Abstract

Nuclear plant modeling and control is an important subject in nuclear power engineering, giving the dynamic model from process mechanics and/or operational data as well as guaranteeing satisfactory transient and steady-state operational performance by well-designed plant control laws. With the fast development of small modular reactors (SMRs) and in the context of massive integration of intermittent renewables, it is required to operate the nuclear plants more reliably, efficiently, flexibly and smartly, motivating the recent exciting progress in nuclear plant modeling and control. In this paper, the main progress during the last several years in dynamical modeling and control of nuclear plants is reviewed. The requirement of nuclear plant operation to the subject of modeling and control is first given. By categorizing the results to the aspects of mechanism-based, data-based and hybrid modeling methods, the advances in dynamical modeling are then given, where the modeling of SMR plants, learning-based modeling and state-observers are typical hot topics. In addition, from the directions of intelligent control, nonlinear control, online control optimization and multimodular coordinated control, the advanced results in nuclear plant control methods are introduced, where the hot topics include fuzzy logic inference, neural-network control, reinforcement learning, sliding mode, feedback linearization, passivation and decoupling. Based upon the review of recent progress, the future directions in nuclear plant modeling and control are finally given.

Funder

Natural Science Foundation of China

National S&T Major Project of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3