Author:
Fang Delei,Yang Junhong,Shang Jianzhong,Wang Zhuo,Feng Yong
Abstract
At present, mobile robotic manipulators have been greatly developed. However, these further promotions are limited by a low load capacity and short operation time. The above problems can be improved by using a hydraulic drive mode and increasing the system energy efficiency. In this paper, a novel energy-efficient wobble plate hydraulic joint is presented, which has the characteristics of having a small size, lightweight, large load capacity, and high energy efficiency. Based on the efficiency analysis in traditional robotic manipulators, this paper presents a novel hydraulic joint with a multi-chamber drive structure. Kinematics model and dynamics model are both established for the analysis of the mechanical characteristics, and the functional relationship between the input and output is depicted by numerical simulation. Based on the structural characteristics and control principle, the load matching controller is designed and specific control processes are formulated. Combined with a strategy of load matching, the servo control system is established and the energy-saving effect is verified by simulation. The result shows that the wobble plate hydraulic joint can change connections between a high-pressure circuit and different working chambers, which realizes the match between the output torque and load torque. With the load matching controller, the energy consumption of the wobble plate joint is greatly reduced, which contributes to a considerably improved energy efficiency. The research in this paper not only lays a theoretical foundation for the development of a wobble plate hydraulic joint, but also provides guidance for the improvement of the hydraulic system energy efficiency in mobile robotic manipulators.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献