A High-Speed Fault Detection, Identification, and Isolation Method for a Last Mile Radial LVDC Distribution Network

Author:

Jamali Saeed,Bukhari Syed,Khan Muhammad,Mehmood Khawaja,Mehdi Muhammad,Noh Chul-Ho,Kim Chul-HwanORCID

Abstract

The day-by-day increase in digital loads draws attention towards the need for an efficient and compatible distribution network. An LVDC distribution network has the capability to fulfill such digital load demands. However, the major challenge of an LVDC distribution network is its vulnerability during a fault. The need for a high-speed fault detection method is inevitable before it can be widely adopted. This paper proposes a new fault detection method which extracts the features of the current during a fault. The proposed fault detection method uses the merits of overcurrent, the first and second derivative of current, and signal processing techniques. Three different features are extracted from a time domain current signal through a sliding window. The extracted features are based upon the root squared zero, second, and fourth order moments. The features are then set with individual thresholds to discriminate low-, high-, and very high-resistance faults. Furthermore, a fault is located through the superimposed power flow. Moreover, this study proposes a new method based on the vector sum of positive and negative pole currents to identify the faulty pole. The proposed scheme is verified by using a modified IEEE 13 node distribution network, which is implemented in Matlab/Simulink. The simulation results confirm the effectiveness of the proposed fault detection and identification method. The simulation results also confirm that a fault having a resistance of 1 m Ω is detected and interrupted within 250 μ s for the test system used in this study.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3