Strengthening Performance Optimization of Single Ball Impact Treatment by Evaluating Residual Stress

Author:

Lei Yang,Wang Zhengwei,Qi Huan

Abstract

Residual stress plays an essential role in affecting the strengthening performance by a surface treatment. Studying the impact of a single ball on a target surface is the basis of shot peening technology in order to obtain the distribution of the residual stress, and to optimize the processing parameters. In this paper, a numerical model has been developed to represent single ball impacts on high manganese steel by considering different processing parameters. It was found that by increasing the ball diameter and impact velocity, the depth of maximum residual compressive stress and the depth of the residual compressive stress layer became significantly enlarged due to increasing kinetic energy of the impacting ball. It was also found from simulation that with an increase in ball impact angle, the maximum residual compressive stress, the depth of maximum residual compressive stress and the depth of the residual compressive stress layer were significantly improved; an exception was the surface residual compressive stress, which showed a decreasing trend. Moreover, by employing quantitative analysis with the entropy method, it was found that within the range of processing parameters considered in the simulation, it is recommended to use a ball with a diameter of 0.6 mm to impact the target, with a velocity of 80 m/s and an angle of 90° for the best strengthening performance.

Funder

Department of Education of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3