Cuspal Deflection and Temperature Rise of MOD Cavities Restored through the Bulk-Fill and Incremental Layering Techniques Using Flowable and Packable Bulk-Fill Composites

Author:

Santis Roberto De,Lodato Vincenzo,Gallicchio VitoORCID,Prisco Davide,Riccitiello Francesco,Rengo Sandro,Rengo CarloORCID

Abstract

Background: The aim of this study was to investigate cuspal deflection caused by material shrinkage and temperature rise occurring in the pulp chamber during photopolymerization. The aim of this study was also to investigate the effect of flowable and packable bulk-fill composites on cuspal deflection occurring in mesio-occlusal–distal (MOD) cavities restored through the bulk-fill or through the incremental layering technique. Additionally, mechanical and thermal properties of bulk-fill composites were considered. Methods: Two bulk-fill composites (high-viscosity and low-viscosity), largely differing in material composition, were used. These composites were characterized through linear shrinkage and compressive test. Cuspal deformation during restoration of mesio-occlusal–distal cavities of human premolars was evaluated using both the bulk-fill and the incremental layering techniques. Temperature rise was measured through thermocouples placed 1 mm below the cavity floor. Results: Shrinkage of the flowable composite was significantly higher (p < 0.05) than that of packable composite, while mechanical properties were significantly lower (p < 0.05). For cusp distance variation, no significant difference was observed in cavities restored through both restorative techniques, while temperature rise values spanned from 8.2 °C to 11.9 °C. Conclusions: No significant difference in cusp deflection between the two composites was observed according to both the restorative techniques. This result can be ascribed to the Young’s modulus suggesting that the packable composite is stiffer, while the flowable composite is more compliant, thus balancing the cusp distance variation. The light curing modality of 1000 mW/cm2 for 20 s can be considered thermally safe for the pulp chamber.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3