Shared Steering Control for Lane Keeping and Obstacle Avoidance Based on Multi-Objective MPC

Author:

Liang Yang,Yin ZhishuaiORCID,Nie Linzhen

Abstract

This paper presents a shared steering control framework for lane keeping and obstacle avoidance based on multi-objective model predictive control. One of the control objectives is to track the reference trajectory, which is updated continuously by the trajectory planning module; whereas the other is to track the driver’s current steering command, so as to consider the driver’s intention. By adding the two control objectives to the cost function of an MPC shared controller, a smooth combination of the commands of the driver and the automation can be achieved through the optimization. The authority of the driver and the automation is allocated by adjusting the weights of the objective terms in the cost function, which is determined by the proposed situation assessment method considering the longitudinal and lateral risks simultaneously. The results of the CarSim-Matlab/Simulink joint simulations show that the proposed shared controller can assist the driver to complete the tasks of lane keeping and obstacle avoidance smoothly while maintaining a good level of vehicle stability.

Funder

National Natural Science Foundation of China

Chinese National Key Research and Development Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. People must retain control of autonomous vehicles

2. Autonomous Driving: Technical, Legal and Social Aspects;Maurer,2016

3. On-Road Automated Vehicle Standards Committee. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems;SAE Stand. J.,2014

4. Cognitive Cars: A New Frontier for ADAS Research

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3