Advancing Process Intensification with High-Frequency Ultrasound: A Mini-Review of Applications in Biofuel Production and Beyond

Author:

Chit Viesuieda1,Tan Lian See1ORCID,Kiew Peck Loo1ORCID,Tsuji Tomoya1,Funazukuri Toshitaka2ORCID,Lock Serene Sow Mun3ORCID

Affiliation:

1. Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

2. Department of Applied Chemistry, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

3. CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

Abstract

High-frequency ultrasound (HFU) is an ultrasound technology with a frequency higher than 1000 kHz. It has become increasingly recognized as an emerging process intensification technology in various fields, such as biofuel production, carbon dioxide absorption, and wastewater treatment. HFU is seen as a potential intensifier technology for biofuel production, as its mechanisms, such as cavitational phenomena, microstreaming, and fountain formation, can benefit biofuel production. Previous research has shown that HFU can decrease the reaction time required for biofuel production, aid in lipid extraction, increase carbon dioxide absorption rates, and be effective in destroying pathogens in wastewater treatment. However, despite the potential benefits, there are limited reports on the use of HFU technology for biofuel production, which has led to uncertainties and constraints in its industrial deployment. These constraints include equipment design, economic analysis, and safety concerns, which require further in-depth analysis. Despite these limitations, previous studies have shown promising results for the incorporation of HFU into various fields due to its unique characteristics and mechanisms. This paper presents a review of the theory and application of HFU for process intensification, with a focus on its potential for biofuel production. It also provides recommendations for the further exploration of the technology to overcome industrial deployment obstacles.

Funder

Ministry of Higher Education

Japan International Cooperation Agency

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3