A Three-Phase Relative Permeability Model for Heavy Oil Emulsion System

Author:

Sun Zezheng1ORCID,Zhou Kang2,Di Yuan1ORCID

Affiliation:

1. College of Engineering, Peking University, Beijing 100871, China

2. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Chemical flooding is important and effective enhanced oil recovery processes are applied to improve the recovery of heavy oil reservoirs. Emulsification occurs during chemical flooding processes, forming an oil-in-water (O/W) emulsion system. In this work, the heavy oil emulsion system is characterized as a three-phase (continuous oil phase, dispersed oil phase, and continuous water phase) system. Based on a capillary tube model, a new relative permeability model is proposed to describe the flow of the emulsion system in porous media quantitatively, considering the physicochemical properties of emulsions and the properties of porous media. A resistance factor is derived in this model to describe the additional resistance to the emulsion flow caused by the interaction between dispersed oil droplets and the pore system. Three dimensionless numbers related to the emulsion porous flow process were proposed and their different effects on the three-phase relative permeability are investigated. To validate the reliability of the proposed model, a one-dimensional O/W emulsion–oil displacement experiment is simulated. The maximum absolute error between the simulated results and experimental data is no more than 10%, and the new model can be used to describe the flow behavior of heavy oil emulsions in porous media.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3