Development of a Network of Accurate Ozone Sensing Nodes for Parallel Monitoring in a Site Relocation Study

Author:

Feenstra BrandonORCID,Papapostolou Vasileios,Der Boghossian Berj,Cocker David,Polidori Andrea

Abstract

Recent technological advances in both air sensing technology and Internet of Things (IoT) connectivity have enabled the development and deployment of remote monitoring networks of air quality sensors. The compact size and low power requirements of both sensors and IoT data loggers allow for the development of remote sensing nodes with power and connectivity versatility. With these technological advancements, sensor networks can be developed and deployed for various ambient air monitoring applications. This paper describes the development and deployment of a monitoring network of accurate ozone (O3) sensor nodes to provide parallel monitoring in an air monitoring site relocation study. The reference O3 analyzer at the station along with a network of three O3 sensing nodes was used to evaluate the spatial and temporal variability of O3 across four Southern California communities in the San Bernardino Mountains which are currently represented by a single reference station in Crestline, CA. The motivation for developing and deploying the sensor network in the region was that the single reference station potentially needed to be relocated due to uncertainty that the lease agreement would be renewed. With the implication of siting a new reference station that is also a high O3 site, the project required the development of an accurate and precise sensing node for establishing a parallel monitoring network at potential relocation sites. The deployment methodology included a pre-deployment co-location calibration to the reference analyzer at the air monitoring station with post-deployment co-location results indicating a mean absolute error (MAE) < 2 ppb for 1-h mean O3 concentrations. Ordinary least squares regression statistics between reference and sensor nodes during post-deployment co-location testing indicate that the nodes are accurate and highly correlated to reference instrumentation with R2 values > 0.98, slope offsets < 0.02, and intercept offsets < 0.6 for hourly O3 concentrations with a mean concentration value of 39.7 ± 16.5 ppb and a maximum 1-h value of 94 ppb. Spatial variability for diurnal O3 trends was found between locations within 5 km of each other with spatial variability between sites more pronounced during nighttime hours. The parallel monitoring was successful in providing the data to develop a relocation strategy with only one relocation site providing a 95% confidence that concentrations would be higher there than at the current site.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3