Robust Inferential Techniques Applied to the Analysis of the Tropospheric Ozone Concentration in an Urban Area

Author:

Hernandez WilmarORCID,Mendez AlfredoORCID,González-Posadas Vicente,Jiménez-Martín José Luis,Camejo Iván Menes

Abstract

This paper analyzes 12 years of tropospheric ozone (O3) concentration measurements using robust techniques. The measurements were taken at an air quality monitoring station called Belisario, which is in Quito, Ecuador; the data collection time period was 1 January 2008 to 31 December 2019, and the measurements were carried out using photometric O3 analyzers. Here, the measurement results were used to build variables that represented hours, days, months, and years, and were then classified and categorized. The index of air quality (IAQ) of the city was used to make the classifications, and robust and nonrobust confidence intervals were used to make the categorizations. Furthermore, robust analysis methods were compared with classical methods, nonparametric methods, and bootstrap-based methods. The results showed that the analysis using robust methods is better than the analysis using nonrobust methods, which are not immune to the influence of extreme observations. Using all of the aforementioned methods, confidence intervals were used to both establish and quantify differences between categories of the groups of variables under study. In addition, the central tendency and variability of the O3 concentration at Belisario station were exhaustively analyzed, concluding that said concentration was stable for years, highly variable for months and hours, and slightly changing between the days of the week. Additionally, according to the criteria established by the IAQ, it was shown that in Quito, the O3 concentration levels during the study period were not harmful to human health.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference86 articles.

1. Tropospheric Ozone: A Growing Threat, Acid Deposition and Oxidant Research Center, 1182 Sowa, Niigata-City, Niigata, 950-2144, Japanhttps://www.acap.asia/wp-content/uploads/Ozone.pdf

2. Nomenclature of Organic Chemestry, IUPAC Recommendations and Preferred Names 2013;Favre,2014

3. Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005;Connelly,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3