A Reconstitution Approach for Whole Rock Major and Trace Element Compositions of Granulites from the Kapuskasing Structural Zone

Author:

Emo Robert B.ORCID,Kamber Balz S.ORCID

Abstract

Current estimates for the composition of the lower continental crust show significant variation for the concentrations of the highly incompatible elements, including large uncertainties for the heat-producing elements. This has consequences for models of the formation of lower crust. For example, is lower continental crust inherently poor in incompatible elements or has it become so after extraction of partial melts caused by thermal incubation? Answering these questions will require better agreement between estimates for the chemistry of the lower crust. One issue is that granulite samples may have been altered during ascent. Xenoliths often experience contamination from the entraining alkaline magma, potentially resulting in elevated concentrations of incompatible trace elements when analysed by conventional bulk rock techniques. To avoid this, we assessed an in situ approach for reconstructing whole rock compositions with granulites from the Kapuskasing Structural Zone, Superior Province, Canada. As terrain samples, they have not been affected by host magma contamination, and as subrecent glacial exposures, they show minimal modern weathering. We used scanning electron microscope electron dispersive spectroscopy (SEM-EDS) phase mapping to establish the modal mineralogy. Major and trace element concentrations of mineral phases were determined by electron microprobe and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), respectively. These concentrations were combined with the modal mineralogies to obtain reconstructed whole rock compositions, which were compared to conventional bulk rock analyses. The reconstructed data show good reproducibility relative to the conventional analyses for samples with massive textures. However, the conventional bulk rock chemistry systematically yields higher K concentrations, which are hosted in altered feldspars. Thus, even in terrain samples, minor alteration can lead to elevated incompatible element estimates that may not represent genuine lower continental crust.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3