Optimized Production of Second-Generation Bioethanol from a Spent C4 Grass: Vetiver (Chrysopogon zizanioides)

Author:

Neve Sameer,Sarkar DibyenduORCID,Zhang ZhimingORCID,Datta RupaliORCID

Abstract

Vetiver grass (Chrysopogon zizanioides) is well-known for its contaminant phytoextraction potential and its capacity to reduce soil erosion, owing to its massive, dense root system. However, the shoots are not major contributors to either of these processes, and are either not utilized at all or they become part of the waste stream. It is well-recognized that lignocellulosic biomass can serve as a source of raw material to produce second-generation bioethanol. This study investigated the simultaneous saccharification and fermentation (SSF) of acid–alkali pretreated vetiver (VG) shoots by Saccharomyces cerevisiae. Vetiver shoots were obtained from three sources: (1) shoots from VG grown in clean potting soil, (2) shoots from VG used for antibiotics phytoextraction from a constructed wetland setup, and (3) shoots from VG used for lead phytoextraction during soil remediation. Bioethanol yield from the shoots from clean soil was the highest (19.58 g/L), followed by the one used for lead phytoextraction (19.50 g/L) and the one used for antibiotics phytoextraction (19.17 g/L). Bioethanol yield and quality obtained from these three VG shoots was superior or similar to other C4 grasses used for bioethanol generation. This study successfully demonstrated that spent vetiver biomass after phytoextraction applications can be repurposed to generate high-quality bioethanol.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3